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Switching-induced Turing instability
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We propose a mechanism for inducing a Turing instability in systems whose only stable state is pattern-free
and homogeneous. Global alternation between two dynamics,eachof which hasthe samehomogeneous stable
state, may induce a Turing instability that leads to pattern formation. We determine what kind of alternation can
drive the system to a Turing instability, and show that the appearance of the induced spatiotemporal structure
depends on the ratio of two characteristic times, one determined by the external forcing and the other by the
instability that drives the system at short times. The mechanism is illustrated by means of theoretical calcula-
tions and numerical simulations on two well-known biological models that are relevant in morphogenesis.
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I. INTRODUCTION

Nonequilibrium patterns are ubiquitous in nature@1#. The
discovery and understanding of new mechanisms for ge
ating spatiotemporal structures is, therefore, a subject o
terest and research in many fields of science. One such
sible mechanism involves the forced alternation between
dynamics. The idea that dynamical switching might lead
interesting structures arose from a number of example
which such alternation provokes unexpected results. The
totypical example is the Brownian flashing ratchet@2#, where
either periodic or random switching between two local p
tentials generates a current of particles in a system, wh
neither of the potentials alone produces a current. Ano
example occurs in the so-called Parrondo’s paradox, wh
alternately playing two losing games produces a winning
sult ~‘‘paradoxical games’’! @3#. An extension of this phe-
nomenology to spatially distributed systems has rece
been shown to lead to pattern formation@4#. In particular,
working with models based on Swift-Hohenberg~SH!-type
equations@5# we have shown that either periodic or rando
global switching between two dynamics may lead to statio
ary or oscillatory spatial patterns. That mechanism require
key ingredient, the alternation between dynamics with t
differentstable homogeneous states. The resulting states
pend on the relation between two competing character
time scales: One is the characteristicswitching time text,
which determines the length of time that the system spe
evolving in each dynamic; the other is the time that the s
tem takes to accommodate to a new dynamic upon swi
ing, that is, therelaxation time tr . When switching is slow
(text@t r), the system alternates between homogene
states. If switching is sufficiently rapid (text!t r), a new un-
stable equilibrium point arises, and stationary patterns
velop. If the times are comparable (text;t r) and the switch-
ing is periodic, oscillatory patterns develop.

Herein we propose an entirely different mechanism
pattern formation in reaction-diffusion systems@6#, again in-
duced by global alternation of dynamics but otherwise
volving very different requirements and time scales th
those described above. This mechanism applies even to
tems where there is asingle uniquestable homogeneou
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state, i.e., one that isthe sameand pattern-free, for both o
the alternating dynamics. Relaxation processes play no
in this mechanism. We will show that in this case collecti
effects and short time instabilities are responsible for dev
oping heterogeneous structures. The mechanism, in
sense, resembles that of some noise-induced phase tr
tions@7,8#, with the significant difference that in the latter th
random perturbations must be local whereas in our case
system is driven globally.

The paper is organized as follows. In Sec. II we presen
short introduction to reaction-diffusion systems and the
called Turing instability@9#, which plays an important role in
biological models for morphogenesis, chemical reactio
and many others physicochemical systems@6#. In that section
we also show that an initial instability that drives the syste
at short times can be consistent with a stable homogene
state at long times. This combination is essential for o
mechanism. Section III details how it is that global altern
tion of two reaction-diffusion dynamics that share a comm
equilibrium may lead to pattern formation. The internal tim
scale that determines whether or not patterns are produc
estimated in Sec. IV. Two reaction-diffusion systems f
quently invoked in biological contexts are presented in S
V, and parameter ranges that lead to morphogenesis by
namic alternation in these two systems are determined.
merical simulations confirming these conditions are p
sented for one of the two models~the activator-substrate
model! in Sec. VI, where we show examples of the formati
of stationary patterns and of oscillatory patterns. Finally,
Sec. VII we summarize our main conclusions and indic
some possible future directions.

II. REACTION-DIFFUSION SYSTEMS

Consider a simple reaction-diffusion system, where t
species interact. The concentrations of the two specie
space pointr and timet are u5u(r ,t) and v5v(r ,t), and
their evolution equations are

] tu5 f ~u,v !1Du¹2u,

] tv5g~u,v !1Dv¹2v. ~1!
©2002 The American Physical Society02-1
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A steady state occurs at concentrationsus andvs such that

f ~us,vs!5g~us,vs!50. ~2!

Its stability can be established by means of a linear per
bation analysis of small perturbations about the steady s

u5us1du, v5vs1dv, ~3!

and linearization off andg around the equilibrium point. We
find the following evolution equation for the perturbatio
du anddv:

] tS du

dv
D 5S f u1Du¹2 f v

gu gv1Dv¹2
D S du

dv
D , ~4!

where

f z[]zf ~u,v !u(us,vs) , gz[]zg~u,v !u(us,vs) , ~5!

andz stands foru or v. The solution is a linear combinatio
of plane waves,

du~r ,t !5(
q

duq~ t !cos~q•r !,

dv~r ,t !5(
q

dvq~ t !cos~q•r !, ~6!

where the amplitudes of the waves with wave vectorq sat-
isfy the following equation:

] tZq5JqZq . ~7!

Here

Zq5S duq

dvq
D , Jq5S f u2q2Du f v

gu gv2q2Dv
D . ~8!

The formal solution of Eq.~7! is

Zq~ t !5Zq~0!exp~Jqt !. ~9!

We have replaced the vectorial subscriptsq by the magnitude
q because the evolution operatorJ retains q-spherically-
symmetric initial conditions, to which we restrict ourselve
The real parts of the eigenvaluess(q) of the operatorJq
determine whether a perturbation diverges@Re„s(q)….0# or
decays to zero@Re„s(q)…,0#. The eigenvalues obey th
equation

s2~q!2s~q!Tr~Jq!1Det~Jq!50. ~10!

The fixed point (us,vs) is stable with respect tohomoge-
neousperturbations if Tr(J0),0 and Det(J0).0. Moreover,
an inhomogeneousperturbation with wave vectorqÞ0 de-
cays if Tr(Jq),0 and Det(Jq).0. These conditions can b
translated to the following sufficient, but not necessary, c
ditions for the stability of the fixed point with respect
homogeneous and inhomogeneousperturbations:
04620
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f u1gv,0, ~11!

f ugv2 f vgu.0, ~12!

Dugv1Dv f u,0. ~13!

On the other hand a steady state will be unstable with res
to someinhomogeneousperturbations~but stable against ho
mogeneous perturbations! if condition ~13! is replaced by

Dugv1Dv f u.2@DuDv~ f ugv2 f vgu!#1/2. ~14!

The latter case is known as theTuring instabilityand leads to
the development of a pattern@9#. The wave vectorq* of the
spatial structure is that which maximizess(q).

If a homogeneous state is stable, Eqs.~11! and~13! forbid
both f u and gv to be simultaneously positive. However, non
of the stability conditions reject the possibility thatf ugv
,0. Moreover, if f ugv,0 then, by Eq.~12!, f vgu,0. We
also point out that at short times the evolution is dictated
the signs of the individual termsf and g. Therefore, it is
possible that even when a homogeneous state is stable
field ~or both! may present an instability at short tempor
scales independently of the initial condition. That instabil
will drive the system up to time scales of ord
O(1/max$fu ,fv ,gu ,gv%) and is crucial in the proposed mech
nism of pattern formation, as shown below. Note that in
case of single-field dynamics, as in the SH model, if a h
mogeneous state is stable it is not possible for the system
present such a short time instability. As a consequence,
mechanism of pattern formation by the alternation of dyna
ics proposed below applies only tomultifieldsystems, and is
completely different from that recently proposed for sing
field systems based on relaxation processes@4#.

III. ALTERNATION OF DYNAMICS

Suppose that we globally alternate two reaction-diffus
dynamics in time. By ‘‘globally’’ we mean that at any give
time all space points are driven by the same dynamic, tha
the reaction functionsf and g and the diffusion coefficients
Du and Dv are not allowed to change from point to poin
Moreover, let us consider two dynamics each of which
itself evolves tothe samestable homogeneous equilibrium
state. The question we wish to explore is whether it is p
sible to induce a Turing instability by global alternation
two such dynamics. Two points are clear even before furt
exploration:~i! For an instability to develop, it is necessa
that the alternation process change the stability propertie
the equilibrium state and~ii ! Relaxation processes betwee
equilibrium states play no role here since the two sepa
dynamics have the same equilibrium point.

Even though relaxation processes play no role in this d
cussion, there are nevertheless two temporal scales invo
in the problem. One is the switching timetext that character-
izes the externally imposed alternation of dynamics, and
other is an internal timet int determined by the system dy
namics. Clearly, the external time is the average time
system spends in each dynamic. In the case of pure peri
2-2
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switching text5T/2, whereT is the period of the alternation
process. If the switching process is random and switch
between dynamics occurs with equal probability, its corre
tion function might be@10#

C~ t,t8!5exp~2ut2t8u/t!, ~15!

wheret is the correlation time of the switching process.
this casetext52t.

Pattern formation requires an early-time instability that
‘‘captured’’ by the alternation process. The internal time
interest turns out to bet int;O(1/max$fu ,fv ,gu ,gv%), that is,
the time scale over which this early instability drives t
evolution of the system. As mentioned earlier, such a ti
scale is also responsible for some noise-induced phase
sition phenomena. However, contrary to the case here, in
noise-induced phenomena the noise actslocally. We will es-
timate the internal time in more detail in the following se
tion.

The control parameterr 5text/t int separates slow and fas
dynamics. When the alternation is slow,r @1, no destabili-
zation of the equilibrium point can be achieved since b
dynamics drive the system to thesamesteady state, and
once there, the switching process can not move the sys
away from that state. Pattern formation can occur if
switching mechanism is sufficiently rapid,r !1. Moreover,
we will show that ifr'1 a resonance phenomenon that lea
to oscillatory patterns occurs in the case of periodic alter
tion.

It is possible to establish rather general conditions un
which pattern formation will or will not occur. Let the two
dynamics be denoted by subscriptsi 51,2, so thatDiu , Div ,
f i(u,v), andgi(u,v) denote the constants and functions u
der dynamici. Each dynamic separately must satisfy the s
bility conditions ~11!–~13!. On the other hand, when dy
namic alternation is very rapid (r !1), adiabatic elimination
immediately leads to the conclusion that the evolution of
system is driven by theaveragevalues A1[ 1

2 (A11A2),
whereA stands forDu , Dv , f (u,v), andg(u,v). An insta-
bility then occurs if the condition~13! is replaced by~14! for
this average dynamic. A number of alternation schemes
easily be ascertainednot to satisfy the necessary criteria. I
particular, the diffusion and the reaction functions must b
be alternated. A particularly simple alternation scheme t
induces spatiotemporal patterns is

f i~u,v !5ai f ~u,v !, gi~u,v !5g~u,v !,

Diu5Du , Div5biDv , ~16!

where theai and bi are positive constants. Note that th
coefficients in this alternation scheme can in principle
related to the presence or absence of an immobile comp
ing agent@6#.

IV. ESTIMATION OF THE INTERNAL TIME

In the remainder of this paper we focus on the case
periodic alternation. In this section we provide a more d
tailed estimation of the timet int . We define the timet50 to
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be the start of the alternation process. The evolution oper
exp(Jqt) in Eq. ~9! is a product of successive evolution o
erators appropriate to each of the alternating dynamics.
instance, if we begin with dynamic 1 then at the end on
periods of alternation we have

Zq~nT!5FexpS Jq
1T

2DexpS Jq
2 T

2D Gn

Zq~0!5@Gq~T!#nZq~0!,

~17!

where the meaning of the notationJq
i is obvious. Thus, the

real parts of the eigenvalues ofGq(T) determine the stability
of the alternation process. Note that the eigenvalues are
same whether one starts with either dynamic 1 or dynami
Moreover, the eigenvalues are of course independent of
initial condition. The characteristic polynomial for the eige
valuesLq(T) of the operatorGq(T) is given by

Lq
2~T!2Lq~T!Tr@Gq~T!#1Det@Gq~T!#50. ~18!

If Re„Lq(T)….1 (,1) the alternation process leads to d
stabilization ~stabilization! of the initial instability. There-
fore, the condition Re„Lq(T)…51 determines the critical sta
bility curve.

When the alternation of dynamics does produce a Tur
instability, there exists a critical value of the period,T̃, such
that there are no instabilities for dynamic alternations slow
than this critical period. Thus for all periods longer thanT̃
the maxima of Re„Lq(T)… as a function ofq take values
smaller than unity. The valueq5q̃ associated with this in-
stability is found from the conditions

ReL q̃~ T̃!51,
]ReLq~ T̃!

]q
uq5q̃50. ~19!

We define the internal timet int as half the value of the critica
period T̃:

t int[
T̃

2
. ~20!

A Turing instability develops for anyT,T̃ at the wave vec-
tor q* that maximizes Re„Lq(T)…. In the limit T→0, the
most unstable mode coincides with the one obtained
maximizing the eigenvalues(q) using theeffectiveaverage
dynamic.

V. MORPHOGENESIS

Because of their broad applicability to spatial different
tion @1,11#, we select two specific reaction-diffusion mode
to illustrate the mechanism. In its most elementary varia
and in convenient dimensionless units, the activator-subst
@12# and activator-inhibitor@13# models read, respectively,

] tu5a~u2v2u!1¹2u,

] tv5~12u2v !1D¹2v, ~21!
2-3



e

co
r-
r-
d

on
th
d

o

’

s.

s

oc

r

es
t a

e

r-
-

on-

are

er-

en
ons
l-
s,
tion
ity
, as
in

x-
e. A
the
the
ged
be-

lds

ion

ili-
ts
line

each

J. BUCETA AND KATJA LINDENBERG PHYSICAL REVIEW E66, 046202 ~2002!
and

] tu5aS u2

v
2uD1¹2u,

] tv5~u22v !1D¹2v. ~22!

The activator-substrate model~21! has been used to describ
pigmentation patterns in sea shells@12,14#, as well as the
ontogeny of ribbing on ammonoid shells@15#. The variablev
in this model can be interpreted as a substrate being
sumed by an activatoru. On the other hand, the activato
inhibitor model ~22! plays an important role in the unde
standing of the regeneration and transplantation of the hy
@13#. Hereu andv represent, respectively, the concentrati
of an activator and of its antagonist, an inhibitor. In bo
modelsa denotes a~positive! cross-reaction coefficient, an
both share the unique fixed pointus5vs51. This stationary
state is independent of the values ofa and D, although the
values of these parameters determine its stability.

We setDiu51 and defineDi5biDv . Global alternation
between two sets of constants$ai ,Di% obeying the following
conditions leads to a Turing instability in each of the tw
models:

ai,1, ~23!

aiDi,1, ~24!

~a11a2!~D11D2!.2, ~25!

~a11a2!~D11D2!,4~322A2!,

or

~a11a2!~D11D2!.4~312A2!. ~26!

We stress again that for either of the sets$ai ,Di% by itself,
the fixed pointus5vs51 is stable. If the ‘‘greater than’
condition is chosen in Eq.~26!, the inequality~25! is auto-
matically fulfilled. One possible family of solutions of Eq
~23!–~26! is

a1,1, ~27!

a2,a1S 8A2211

7 D , ~28!

D1,
1

a1
, ~29!

8A2112

a11a2
2D1,D2,

1

a2
. ~30!

VI. NUMERICAL SIMULATIONS

Two particular pairs of constants fulfilling the condition

~27!–~30! are (a1 ,D1)5( 3
4 ,1) and (a2 ,D2)5( 3

100,30). We
use these values in Fig. 1, where we depict the l
04620
n-
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Re„Lq(T)…51 ~solid curve!, and the most unstable Fourie
mode as a function of the alternation period,q* (T) ~dotted
line!. An alternation process withT<T̃ leads to a Turing
instability due to the destabilization of all the Fourier mod
inside the solid curve. The resulting pattern will presen
wavelength l(T)52p/q* (T). The tip of the loci
Re„Lq(T)…51 determines the internal timet int5T̃/2.0.17.
Note thatq* is almost independent ofT. Recall that Fig. 1
applies to both the activator-substrate model and th
activator-inhibitor model.

We carry out numerical simulations of the activato
substrate model~21! on a 64364 square lattice using a sec
ond order Runge-Kutta scheme with periodic boundary c
ditions @results for the model~22! are very similar#. The
initial conditions for the concentrations of the speciesu and
v are random. The space and time integration intervals
set toDt51023 andDx5Dy51. Sincel.0.4, we expect
L/l;4 pattern wavelengths. We focus on the periodic alt
nation for different values of the ratio

r 5
T

2t int
5

T

T̃
~31!

that controls the appearance of the Turing instability. Wh
r .1 we obtain a homogeneous state with concentrati
us51, vs51, as expected. Asr decreases a Turing instabi
ity develops. In the limitr→0 a stationary pattern appear
as shown in Fig. 2. The stationary values of the concentra
fields of u andv are shown by means of gray-scale dens
plots. Note the hexagonal structure of the Turing patterns
well as thenegativeaspect of the concentrations, that is,
the regions where the activatoru is highly concentrated, the
substratev has a low concentration. This behavior is e
pected since the activator grows by depleting the substrat
spatial Fourier analysis of Fig. 2, shown in Fig. 3, reveals
most unstable mode of the pattern. The figure shows
spatial power spectrum of the concentration fields avera
over angles. This angle-averaged spectrum is appropriate
cause of the rotational symmetry of the concentration fie

FIG. 1. For the two models described in the text, an alternat

process withT<T̃ leads to pattern formation due to the destab
zation of all the Fourier modes inside the solid curve. All poin
inside the solid curve represent unstable modes. The dashed
marks the most unstable mode of the patterns that develop for

T. The tip of the curve is at the critical periodT̃.0.34 that defines

the internal time t int5T̃/2 and the associated wave vectorq̃
50.393. AtT50 the most unstable mode occurs atq* 50.399.
2-4
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u(r ) and v(r ). The most unstable mode isq* .0.4, in
agreement with the theoretical estimate.

A striking phenomenon occurs when the control para
eter reaches values of orderr;1. A resonance between th
two characteristic times leads to oscillatory patterns. Figu
shows the oscillatory pattern obtained for the concentratiov
for r .0.9. The spatial arrangement of the oscillatory patte
as well as the most unstable mode, coincide with those
tained in the stationary case. We point out the analogy
tween these localized oscillations in the concentration of

FIG. 2. Gray-scale density plot of the stationary concentrati
of the chemical speciesu ~activator! and v ~substrate! for r
.0.03.

FIG. 3. Power spectrum of the concentration fields shown
Fig. 2 averaged over angles. The most unstable Fourier mod
q* .0.4, in agreement with the theoretical estimate of Fig. 1.
04620
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morphogenv and the so-calledoscillons found in vibrated
granular layers@16#.

VII. DISCUSSION AND CONCLUSIONS

We have shown how a nonequilibrium process ofglobal
alternation of dynamics may lead to pattern formation
reaction-diffusion systems, and we have used two partic
models of biological interest to illustrate the necessary c
ditions for pattern formation and the actual patterns that m
occur. To our knowledge, the mechanism is different fro
any other known pattern formation mechanism associa
with dynamic alternation, because~i! the alternation is globa
~rather than spatially random!, and ~ii ! the alternation can
occur between two dynamics that sharea commonunique
stable homogeneous equilibrium point when either a
alone. Nevertheless, a Turing instability develops wh
switching between these dynamics is sufficiently rapid.

Clearly, since the two dynamics may even share an e
librium point, the mechanism leading to pattern formati
does not involve relaxation processes from one equilibri
state to another@4#. Instead, the triggering mechanism in th
case is the instability that may drive multifield systems
short times. We also noted that the occurrence of a Tur
instability requires the alternation of both the reaction a

s

n
is

FIG. 4. Oscillatory pattern for the activator-substrate model w
r .0.9. Snapshots of the concentration of the substratev during a
period of the alternation process. Note the localized oscillati
arranged in a hexagonal structure.
2-5
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the diffusion terms in the field equations.
We presented a general class of reaction-diffusion syst

where a Turing instability can be induced, and establis
sufficient conditions within this class for the occurrence
patterns. To illustrate the mechanism we chose two mo
well-known in a biological context, namely, the activato
substrate model@13# and the activator-inhibitor model@14#.
While it may be difficult to implement in practice the glob
variations in these particular models, they serve as a fe
bility study of the idea. Reaction-diffusion models in whic
natural periodic variations in the reaction and diffusion ter
may occur arise in the context of epidemics studies in s
tems subject to seasonal variations, see, e.g., Ref.@17#. To
support our theoretical description, we performed numer
simulations on the activator-inhibitor model and found exc
lent agreement with our predictions concerning relevant t
scales. The control parameter for the mechanism is the r
r of the alternation period and the time scale over which
early instability drives the evolution of the system. W
showed that there are three different regimes of beha
depending on the value of the control parameterr. When r
@1 ~slow alternation!, the system relaxes to the uniqu
stable equilibrium point of each of the two dynamics. Wh
r !1 ~fast switching!, an effective average dynamic drive
the system and produces a Turing instability that leads
stationary pattern formation. Finally, ifr'1, a resonance
phenomenon leads to oscillatory patterns. The oscillatory
havior is only observed for periodic alternation, whereas s
d

e

e
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tionary pattern formation occurs with fast alternatio
whether the switching is periodic or random@4#.

The work presented here concerns the dynam
alternation-induced destabilization of a unique stable equi
rium point, turning it into an unstable focus or an unstab
node. One can of course envision destabilization proce
that generate other equally interesting outcomes such
Hopf bifurcation. As for the switching mechanism discuss
herein, we note that the essential ingredient for pattern
mation is an initial instability, and that the pattern formatio
process is more robust against changes in the alternation
riod the longer is the temporal window during which th
instability drives the system. Clearly, dichotomous switchi
is not a fundamental component of the process. Other mo
lations should lead to the same phenomenology. Work
these questions is in progress.
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